DTopRP, FLXDRG /s/73

/l/€€/ fb@mf« fests y{ LDRLST. PIBORP. [T,
FRNPHA, FLCDRE, PLXLST

O

R 444 G ED@ fape’
{)?DM;J F g@{’l “fq;t} Wt &M% /5 B/b ’QM«U)"

@ﬁcwrﬂe Bz 2_0"/\/ (;f)ﬁ\o@di

44'1 4 (Ceq[»r/ﬂy” e S‘%w%ﬁ
/Q@WOUQ/%@VN% S@(_#bw} c)?v C’g)/g éﬁffﬁ LU/VZ

/bwf/fh’rﬂméy cath / < (e Mergeo T)

-~

~ Ao s

END BF /\)O"FEY r‘((fm}* é&@kw fo
Aolpb)

| /"\t?mﬁ/db/}al»;h/gw;d(f;”j"lf(

No dis ketle L“Ck“’(\o Wl Ao bac | deved taa

) &/Q‘ MW\&’ }L/ Lo M« W’lﬂ%’l—ﬂdf”‘d
7 “7

& W J(Z;\Cm,uciz 7[7‘/ %KO%O /z,c/(ﬁy//n?

Fo ttaege (g ch aa- check M("BM”‘

Ww\ M/y QRICIC, Code en vetwon) afe

\ws;wm

‘QWJ Ew vy 3 fand notes)

ADAPTING PIONEER PRODUCTION SOFTWARE TO THE SUN!

INTRODUCTION

In the overall effort to move cosmic ray data production and analysis away from the IBM MVS environment,
staff2 have adapted Pioneer cosmic ray data production tools (EDRLST, PIODRP, PFRTPL, PRNPHA,
FLXDBG, and FLXLST) to the Sun Unix environment. The original IBM source code to these tools is written in
FORTRAN and IBM assembly language, and the adapted Sun source code in FORTRAN and C. This
document presents some of the considerations taken in this conversion effort in the anticipation that future
conversion efforts must deal with similar issues.

The essence of this document is a presentation both of the conditions under which program changes are
necessitated, and of the suggested transformations to be applied to programs in conversion work. This is by
no means an exhaustive work, but rather a summary of experiences gained from a single conversion effort.

CONVERSION GOALS AND GUIDING PRINCIPLES

The objective of the conversion task was to move software off the IBM. The two primary goals of the
conversion effort were that the conversion effort be quick and that the conversion be correct in that it matches
the IBM version. To achieve these goals, two primary principles were applied:

Principle 1 Minimize changes in the original FORTRAN source code to only
P those changes which are absolutely necessary.

Princile 2 Converted assembly routines should be tested as thoroughly as
P possible against the existing IBM routines before use.

The first principle was used to expedite the creation of an initial working version on the Sun. The motivation

for this is that once the software is essentially working on the Sun, then that dependence on the IBM (with

respect to conversion work) is broken. Additional development in adaptation work could then be localized to

the Sun workstation environment. The advantage of this approach is that the adaptation work becomes less

dependent on the existence of the IBM.

Expedition of assembly routine conversion is difficult to guarantee without formal tools and mechanisms. One
technique employeed by staff when analyzing assembly routines was to describe the state of computation
(formally or semi-formally) as logical formulations in terms of both the low level machine and the application
domain. In other words, staff used assertions or identified invariant conditions at various points in the
assembly routines describing changes to state of the machine. Of course, as there is no formal axiomatization
of the IBM system, the axioms applied were based on the best understanding of the system. These assertions
were then turned into program specifications that were used to derive converted routines using program
synthesis techniques. In short, the applied conversion process implemented of a series of language
transformations from assembly routines to low level assertions to application domain level assertions to
specifications to converted routines.

IWritten by David Crick (Hughes STX), April 16, 1993. Thanks to Nitya Nath, John Katen, Henry Lo, and Pamela Schuster (Hughes STX) for
helpful comments.

2David Crick, John Katen, Henry Lo, Ramesh Ponneganti, and Pamela Schuster (Hughes STX).

An implication of the first principle is that extreme caution should be used when removing large sections of
code (however safe it seems) and when changing types of variables (especially those in shared common
blocks). This implied principle and the second principle above provided some protection against inadvertently
introducing subtle bugs into the software, thus supported the maintenance of the correctness goal.

In achieving the correctness goal, testing had to be employed. At the routine or program block level, formal
testing techniques were used, often resulting in exhaustive testing. The formal tests would, for example, test
paths of execution or extreme cases in the routines. One approach applied in formalizing the testing of
routines that depend on data read from files was to simulate the reading of live data files. The danger in
testing routines only by reading actual live data files is that the tests then become dependent on the contents of
the files, and certain extreme cases might be missed. In general, routines in question should be treated as
independent units of which all the inputs are clearly understood and controllable by the tester.

At the higher system level, elaborate tests were conducted to guarantee that the Sun version saw everything
the same as the IBM version. At this level, testing of live data files is essential. In general, testing the
correctness of the conversion resulted in the greatest consumption of time.

When executing extensive tests, bugs may be discovered in the original IBM versions of software. Depending
on the nature of the bugs and the format of the testing, in some cases it may not be wise to correct preexisting
bugs on the Sun version until after testing has been completed. Typically this situation occurs when the IBM
version with the bug has been run before the test, the test depends on the results of the run, and it is practically
impossible to rerun a corrected IBM version (e.g., an EDR tape may no longer exist or a catalog may be
destroyed).

Once the initial conversion has been made and verified correct, then bug fixes and more significant changes to
the code could be considered. At that point, different Sun versions could be compared against the initial Sun
version. Hence, it is crucial that the verification of the initial conversion be of high quality.

DIFFERENCES IN FORTRAN IMPLEMENTATIONS

Several differences have been observed between the Sun and IBM FORTRAN implementations. Some of these
differences are presented in this section.

Differences in Constant Expressions

On the IBM, Boolean constant expressions may be denoted by T and F. These must be changed to . TRUE. and
.FALSE. on the Sun. Similary, hexadecimal constants may be denoted, for example, as ZO1FFFFFF on the
IBM, but must be changed to X' 01FFFFFF ' on the Sun. Finally, statement labels on the IBM may be
referenced, for example, by &£1000, but must be referenced by *1000 on the Sun. So, given the following
fragment of IBM source code

IMPLICIT LOGICAL*1(Q)
DATA Q/T/,I/Z01FFFFFF/
1000 CALL TEST(&1000)

SUBROUTINE TEST (&)

the converted fragment should appear as

IMPLICIT LOGICAL*1(Q)
DATA Q/.true./,I/x'01FFFFFF'/
1000 CALL TEST(*1000)

SUBROUTINE TEST (*)

Notice the use of lower case text in the changed code. This convention allows quick identification of changed
code, and was used wherever possible in the Pioneer conversion.

Differences in Namelist Input

Affecting the Pioneer conversion, there are two significant differences in the way in which namelist input
works. The first difference is that on the Sun, a logical variable whose value is input via a namelist must be of
type LOGICAL*4 while on the IBM it may be of type LOGICAL*1. In this case, suppose there is an input
variable Q of type LOGICAL*1. A new identifier Onew of type LOGICAL*1 is introduced and all references to Q
in that module are changed to Qnew (essentially renaming Q as Qnew). Then the type of Q is changed to
LOGICAL*4, and Q=0new and Qnew=Q are inserted before and after, respectively, the namelist input. In this
way we preserve the interface to the program (the input variable is still identified by 0), and the type and
functionality of Q through Onew (it may be the case that Q is in a shared common block, so it may be desirable
to preserve the type of Q). For example, given the following fragment of IBM source code

LOGICAL*1 Q1,Q2,0Q3,04

LOGICAL*4 Q5

COMMON /SHARE/ Q1,02,Q3,Q4,05
NAMELIST /INPUT/ Q1,Q5

Q1=.FALSE.
Q5=.TRUE.
READ (5, INPUT)

IF (Q1.0R.Q5) STOP
the converted fragment should be

LOGICAL*1 Qlnew,Q2,0Q3,04

LOGICAL*4 Q1,Q5

COMMON /SHARE/ Qlnew,Q2,0Q3,04,05
NAMELIST /INPUT/ Q1,Q5
Qlnew=.FALSE.

Q5=.TRUE.

ql=qlnew

READ (5, INPUT)

glnew=ql

IF (Qlnew.OR.Q5) STOP

Again, this transformation preserves the name of the input variable, the type of the variable shared in the
common block, and the functionality of the routine. The need for the two variables representing the same
value arises essentially from the fact that the types of the namelist input variable and the shared variable differ.

The second difference is that on the IBM, character strings may be read via namelists into variables of type
REAL*4, REAL*8, or COMPLEX*16, whereas on the Sun, they must be read in as variables of type
CHARACTER*. The same approach as that above is taken except that, in this case, the two variables may be
equivalenced. When the two variables have been equivalenced, uses of the variable of type CHARACTER*
should be made wherever the variable is used as a character string. Also, since the two variables have been

equivalenced, the need for copying before and after the namelist read is eliminated. As an example, the
following fragment of IBM code

IMPLICIT REAL*8 (D)
COMPLEX*16 C1
CHARACTER*1 C2
COMMON /SHARE/ D1,D2,C1l,C2
NAMELIST /INPUT/ D1,D2,C1,C2
DATA D1/'TEST'/,D2/10.0325/
READ (5, INPUT)
WRITE(6,10) D1,D2,C1,C2

10 FORMAT (1X,A8,F9.4,A16,A1)

should be converted as

IMPLICIT REAL*8 (D)
COMPLEX*16 Clnew
CHARACTER*1 C2
character*8 dl
character*16 cl
equivalence (dl,dlnew), (cl,clnew)
COMMON /SHARE/ Dlnew,D2,Clnew,C2
NAMELIST /INPUT/ D1,D2,C1,C2
DATA D1/'TEST'/,D2/10.0325/
READ (5, INPUT)
WRITE(6,10) D1,D2,C1,C2

10 FORMAT (1X,A8,F9.4,A16,A1)

Note that in this example, it would have been acceptable to keep the common line as
| COMMON /SHARE/ D1,D2,Cl,C2

thereby eliminating the need for D1new and Clnew altogether. As stated earlier, care should be taken when
changing the types of variables in shared common blocks.

Differences in Hexadecimal Formats, and Octal Formats

Hexadecimal output formats differ in the Sun and IBM implementations of FORTRAN. To enable writing on
the Sun to match that on the IBM, two routines hexfmt and oct fmt were written.

The subroutine call hexfmt (i, c, 1) writes the integer i into the first 1 characters of the character string c in
a hexadecimal format matching what the corresponding write on the IBM would produce. For example, the
following fragment from writer (part of PFRTPL)

WRITE(6,35)..., (ISPARE(I),I=1,2)
35 FORMAT(2X,...,2(1X,Z8))

was converted as

character*8 cspare(2)

call hexfmt (ispare(l),cspare(l),8)

call hexfmt (ispare(2),cspare(2),8)

WRITE(6,35)..., (cSPARE(I),I=1,2)
35 FORMAT(2X,...,2(1X,a8))

The subroutine call oct fmt (i, c, 1) behaves the same as hexfmt, except that an octal format is used. This
routine was used in the conversion of EDRLST.

Remnants from older versions of FORTRAN

Several sources of programs were written under older versions of FORTRAN. In general, care should be taken
that hidden remnants from these earlier versions do not lie dormant in software. Here we list cite some of the
occurrences of these types of problems.

The following construction appeared in EDRLST and was legal under the IBM interpretation of FORTRAN,
but illegal under the Sun interpretation:

42

DO 175 NsC=1,3

80 <STATEMENT>
GOTO 42

175 CONTINUE

DO 610 NsC=1,5

IF (<TEST>) GO TO 80

600
610 CONTINUE

Essentially this construction may be characterized as jumping from the inside of one loop to the inside of
another. In general, careful analysis may be necessary to provide the proper transformation to remove such a
construction. In this case in EDRLST, the following conversion worked:

42

DO 175 NSC=1,3

80 <STATEMENT>
GOTO 42

175 CONTINUE

DO 610 NSC=1,5

IF (<TEST>) GO TO 590

GO TO 600
590 <STATEMENT>
GO TO 42
600
610 CONTINUE

Essentially the jumped to block was copied into the jumped from loop preserving the semantics of the program.

Another example of source code written in older versions of FORTRAN occurs in how the initial element of an -
array may be referenced in an equivalence declaration. The following is legal in some versions of FORTRAN,
but is illegal on the Sun:

DIMENSION A(100),B(10,10)
EQUIVALENCE (A(1),B(1))

The updated version, of course, should be

DIMENSION A(100),B(10,10)
EQUIVALENCE (A(1),B(1,1))

DIFFERENCES IN LIBRARIES

In the Pioneer production source code, several calls to IBM system libraries are made. The essential IBM
routines had to be adapted to the Sun as well. The most crucial of these, the FTIO library (including fopen,
fread, fwrite, and fclose), was provided by NASA.3 Two other referenced routines, abend and fmove,
were converted by staff and require no additional special consideration. Discussed here are the FTIO
considerations. Calls to the DAIO library were not used in the Sun version, and therefore not converted.

3Written by Nand Lal (GSFC) and E.S. Panduranga (STX), 1991.

The two primary concerns when using the FTIO routines on the Sun are that a file must be opened using
fopen before reading from it or writing to it using fread or fwrite, and that, after use, a file should be
closed using fclose if the file has been written to using fwrite. No special consideration need be taken
regarding calls to fread and fwrite, with one exception that is discussed at the end of this section.

A possible indication of where an fopen should appear is where either a mount or a posn call is made in the
IBM source code. For example, in the source code to the FLXDBG routine dbgtap, the following fragment

CALL MOUNT2 (2,NSUMUN, DTAPOT,1,&3999)

ENTRY MOUNT2 (IOF,LUNO,DVLSER,NFILE, *)

CALL MOUNT (IOF,LUNO,DVLSER,NFILE)
indicates the need of a call to fopen. This was then converted to

integer*4 fopen
character*16 cfile

lentap=islen(ctapot)
cfile=ctapot(l:lentap)//'.£1lx'

if (fopen(2,nsumun,cfile,O0,'VB',32760,32760).ne.0)
1 call fopenerr(cfile)

Not shown here is the fact that the character string ctapot must have been earlier assigned a value serving as
the prefix to a Unix file name. The utility functions islen and fopenerr were written to assist in this
transformation. The function call islen (c) returns the length of the character string c up to trailing blanks,
and the subroutine call fopenerr (cfile) reports a problem opening a file and aborts the program. The
concatenation operator (/ /) appends the suffix ' . f1x' to the Unix file name. Care should be taken with the
concatenation operator that each operand be of type CHARACTER* (and not, for instance, of type REAL*8).

Calls to POSN were handled differently in this conversion. For example, in PIODRP, the call
I CALL POSN(1,NRD,MFILE)
was converted to

integer*4 fopen
character*8 c8
character*16 cfile

lentap=islen(dtape)

call istring(mfile,c8,8,m)
cfile=dtape(l:lentap)//'.£file'//c8(m:8)

if (fopen(l,nrd,cfile,0,'VB',32760,32760).ne.0)
1 call fopenerr(cfile)

As in the previous example, the character string dtape must previously be set to a prefix of a Unix file name.
The utility function istring was written to assist in this transformation. The subroutine call

istring (i, c,n,m) translates the integer i into ASCII characters right aligned in ¢ (1:n). This routine sets
m to the integer such that i begins at position m, i.e., c (m:n) contains the translation of i. Essentially, this
transformation is constructing a suffix, for example ' . file9", the trailing integer of which indexes a file in the
manner of the call to posn.

The need for a call to fclose is typically indicated by a call to unload in the IBM source code. For example,
in the PIODRP routine wrtpha, the call

I CALL UNLOAD (NPHAOT)
was converted as
I call fclose(nphaot)

One final concern regarding the use of the FTIO library occurs when calls to fread (or fwrite) specify the
use of an I/O buffer internal to the FTIO routines. This is requested of the FTIO routines by using a negative
unit number to specify a unit. In this conversion, all such specifications were removed. This placed the
burden of allocation and management of space for I/O buffering on the Sun source code. An example from
the conversion of EDRLST should illustrate this transformation. The IBM source code fragment

DATA NRD/10/,NEGNRD/-10/,LENCMD/1200/

MFILE=2

CALL POSN(IOTYP,NRD,MFILE)

CALL FREAD (MYADR,NEGNRD, LEN, &890, &860)
IF (LEN.NE.LENCMD) GO TO 840

CALL UPKCMD (MYADR)

was transformed into

DATA NRD/10/,NEGNRD/-10/,LENCMD/1200/
character*1200 bufcmd

lentap=islen(dtape)

call fopen(l,nrd,dtape(l:lentap)//'.£file2’',
1 0,'VB',32760,32760)

CALL FREAD(bufcmd,nrd,LLEN, *890, *860)

IF (LEN.NE.LENCMD) GO TO 840

CALL UPKCMD (bufcmd)

In this implementation, of course, upkcmd had to be changed to take a pointer to a block of memory rather
than, as before, a pointer to a pointer to a block of memory. More will be said in a later section about the
passing of pointers to assembly routines in conversions.

DIFFERENCES IN HARDWARE

Three differences between the IBM and Sun hardware deserved special attention in this conversion work.
These differences are in floating point representations, half-word integer alignments, and character set
encoding.

Floating Point Representations

The first hardware difference between the IBM and the Sun to consider is that the two machines have different
internal representations of floating point numbers. The primary concern is when reading, on the Sun, floating
point data previously written using the IBM representation. When this occurs, the representation needs to be
changed to the Sun (IEEE) representation before processing on the Sun. This conversion may be accomplished
by the NASA provided if fe subroutine.* The most opportune place to perform this conversion is
immediately after the data has been read (the correctness of this, of course, depends on the usage of the
floating point numbers). The following fragment from PIODRP demonstrates this conversion:

COMMON /DATAREC/ MSDATA,MDAYYR,MTMFLG,MDSPR1, SNR,MDSS,MBITRT,
MFORMT, MSRTLT,MEXSKD, MDSPR2, MFLAGS, RATTIM, SPNPER,
MSPF, ROLPUL,MTM112, BUSVLT, BUSCUR,MTM108, PLTTEM,
MDATA (1280)

130 CALL FREAD(MSDATA,NRD,LEN, *150,*133)

snr=iffe(snr)

rattim=iffe(rattim)
spnper=iffe (spnper)
rolpul=iffe(rolpul)
busvlt=iffe(busvlt)
buscur=iffe(buscur)
plttem=iffe(plttem)

In general, bit patterns may be initialized to reals in the IBM format in several ways other than by the fread.
Two other conditions to watch for are initialization of reals by equivalencing and initialization using fmove.
Also, care should be taken that iffe is not simply applied to every variable of type real after initialization, but
only to those variables that are used as reals and store reals in the IBM format.

Half-Word Integer Alignments

The second machine difference of concern is the difference in acceptable half-word alignments. On the Sun,
half-word integers passed as arguments to subroutines expecting whole-word integers is generally dangerous.
As an example, the following code, where test is implemented as an assembly routine, is acceptable on the
IBM.

INTEGER*2 H(2)
CALL TEST(H(1))
CALL TEST(H(2))
CALL TEST(I)
STOP

END

4ritten by Nand Lal (GSFC) and E.S. Panduranga (STX), 1991.

10

Care should be taken when adapting this code to the Sun. The following solution leads to several problems:

INTEGER*2 H(2)
CALL TEST(H(1))
CALL TEST(H(2))
CALL TEST(I)

STOP

END

SUBROUTINE TEST(I)
RETURN

END

The first call to test passes a surprising value to test via i instead of h(1). The second call to test leads to
a violation which crashes the program. For general security on the Sun, subroutine calls which use half-word
actual parameters where whole-word arguments are expected should be avoided. Three possible solutions to
this lead to one of the following alternatives:

INTEGER*2 H(2)
itmp=h(1)

CALL TEST (itmp)
itmp=h(2)

CALL TEST (itmp)
CALL TEST(I)
STOP

END

SUBROUTINE TEST(I)
RETURN

END

or

INTEGER*2 H(2)
CALL TESTh(H(1))
CALL TESTh(H(2))
CALL TEST(I)

STOP

END

subroutine testh(h)
integer*2 h
return

end

SUBROUTINE TEST (I)
RETURN

END

or

INTEGER*2 H(2)

CALL TEST (int(H(1)))
CALL TEST(int(H(2)))
CALL TEST(I)

STOP

END

11

SUBROUTINE TEST (I)
RETURN

END

function int(h)
integer*2 h

int=h

return

end

The second approach was taken in the conversion of the IBM version of gbit (3, i, j), which was called with
i as either a half- or whole-word integer. Two routines, gbit and ghbit resulted from this conversion.

The third approach was taken in the conversion of the PIODRP routine phaout.

Character Set Encodings

The third hardware difference is that the two machines use different character set encodings (the Sun uses
ASCII and the IBM uses EBCDIC). As in the case of floating point representation differences, this problem
arises when reading strings which were written in EBCDIC format. A related problem is that of reading
numbers in an IBM peculiar zoned format. For these purposes, two routines, cnvebc and izone were written
to assist in conversion. The subroutine call cnvebc (c, 1) converts the first 1 characters of the character string
c from EBCDIC to ASCII (storing the results in c), and the function call izone (c, 1) converts the first 1
characters of the character string c from zoned format to integer (returning the integral result). Essentially,
izone is used in assembly routine conversion to implement the assembly instructions

PACK
CVB

The following extraction from the conversion of upkcmd demonstrates the use of both cnvebc and izone:
subroutine upkcmd (buffer)

character*1200 buffer
character*8 c

hdycmd=1izone (buffer (j:j+2),3)

c=buffer (j+13:3+20)
call cnvebe(c,8)

CONVERTING ASSEMBLY ROUTINES
Style and Assembly Routines

In most cases, each IBM assembly language routine was converted to a single routine on the Sun. There were
two exceptions to this which merit discussion as general principles of programming style.

12

The first exception was in the case of gbit. On the IBM, gbit (1,h,j) would be called as a subroutine, and
gbit (3,h,j) would be evaluated as a function which returns a logical value. As this is not good
programming practice, gbit was converted to both a subroutine, ghsetbit (h, j), and a function,

ghbit (h, j) (and also gbit, as discussed above).

The second exception was in the cases of pkhet and pklet. As the logic of these two routines is the same,
these routines were combined into a single subroutine, pkhlet, in the conversion. This was merely a matter
of taste, with a consideration for localizing the logic of these routines. More about pkhlet will be said in the
next subsection.

Passing of Pointers to Assembly Routines

On the IBM, calls to assembly routines pass addresses of the arguments to the assembly routines. For example,
the following statement

| CALL TEST(H(1))

where test is an assembly routine and h an array, would pass the address of h (1) to test, thereby giving
the routine test access to all of h. This trick was used at several places in the IBM source code. Conversion
of the assembly routine to C should allow the call to go as is; however, conversion of the assembly routine to
FORTRAN requires some doctoring of the subroutine call. As an example, the following fragment is from the
PIODRP routine phaout:

IMPLICIT. INTEGER*2 (H)
DIMENSION HD(12) ,HPNA(120,6)

CALL PKLET(HD(3),HPNA(118,6),&72)

As discussed above, pkhet and pklet were translated into pkhlet. The above call gives pklet the
addresses of hd (3) and hpna (118, 6), and pklet accesses components of the arrays hd and hpna beginning
at those addresses. The idea of the transformation applied is to create character strings equivalenced to hd
and hpna, and then pass the proper substrings to pklet. If chd and chpna were character strings of
appropriate sizes and were equivalenced to hd and hpna, then the following subroutine call

| CALL PKLET (cHD(5:),cHPNA(2869:),%72)

would be an appropriate conversion. As discussed in the above section, pkhet and pklet were converted
into a single routine, pkhlet. This routine takes an additional first argument of 0 to perform the pkhet
function, and 1 to perform the pklet function. The final transformation of the above fragment results in the
following;:

IMPLICIT INTEGER*2 (H)

DIMENSION HD(12),HPNA(120,6)

character*24 chd

character*1440 chpna

equivalence (hd(1l),chd), (hpna(1,1),chpna)

CALL PKhLET(1,cHD(nhd(3):),cHPNA (nhpna(118,6):),*72)

13

The utility functions nhd, nhpna, nphnb, nhpga, and nhpgb were written to compute the proper indexes into
equivalenced character strings used by phaout.

Converted Assembly Routines

The following assembly routines have been converted to the Sun:

Z contim 3 logdec j_pklet / upklog
{ geclog Jmstot . 3 apit 2. upkseq
j_ getput 7 mvzero ,] upkemd /. upkspn
- hgroup {Lphasrt 7 upkflg 7 upktim
i iget i pkhet) upkfmt

Three techniques were employed in the conversion of a routine. The first technique was the series of
transformations from one language to another described in the above section on goals and principles. The
second technique was that of reading the initial specifications for the routine, writing a routine from scratch
based on those specifications, and then testing the functionality of the two routines for equivalence using the
differences as a refinement of the initial (typically ambiguous) specifications. This may be thought of as a
special case of the first technique where the initial transformations are given. The third technique was to treat
the routine as a black box, determine the functionality of the routine by establishing relationships between
inputs and outputs, and then using this functionality as the specification of the routine. Essentially this
technique derives the specifications of the routine without regard to the source code or initial specifications.
This technique was employed in the conversion of 1ogdec.

CHANGES TO THE OPERATIONAL ASPECTS OF THE TOOLS

Global changes in the way the converted system will ultimately function on the Sun directly influenced the
conversion effort. The most significant change affecting the conversion work was the termination of the
existing catalog system. The approach taken was to simulate the reading of the catalog that exists on the IBM.
An example of this occurred in the conversion of the FLXDBG routine dbgdrs. The following code from this
routine was reads catalog data from the tape catalog:

COMMON /DRSCAT/ HIDSPC,HSPAR, HPHATP, HRATTP,DPHATP (100),
1 MSPHAS(100) ,MSPHAE (100) ,HDPHAS(100) ,HDPHAE (100) , HPHAFT (100),
2 DRATTP(100) ,MSRATS(100) ,MSRATE (100) ,HDRATS(100) ,HDRATE (100),

200 READ(20,210) NCATP,HID
210 FORMAT(I1,Al)
NCUNP=NCATP+20
CALL FREAD (HIDSPC,NCUNP, LEN, &520,&610)
CALL UNLOAD (NCUNP)
IF (HID.NE.HIDSPC) GO TO 500
RETURN

This was converted as

14

common /influx/ dsat,asat,...

common /source/ dtape

COMMON /DRSCAT/ HIDSPC,HSPAR,HPHATP,HRATTP,DPHATP (100),

1 MSPHAS(100) ,MSPHAE(100) ,HDPHAS (100) ,HDPHAE (100) , HPHAFT (100),
2 DRATTP(100) ,MSRATS(100) ,MSRATE (100) ,HDRATS(100) ,HDRATE (100),

data asatf/'F'/,asatg/'G'/,hsatf/'F'/,hsatg/'G'/
NCUNP=NCATP+20
if (asat.eqg.asatf) then
hidspc=hsatf
else if (asat.eqg.asatg) then
hidspc=hsatg
else
write(6,211)
call abend(-1)
211 format (1x, 'Character 9 of SATID must be either F or G')
endif
hid=hidspc
hphatp=1
dphatp(1l)=dtape
hdphae (1)=32000
hrattp=1
drattp(l)=dtape
hdrate(1)=32000
IF (HID.NE.HIDSPC) GO TO 500
RETURN

The basis for this approach is the maintenance of assertions essential to the correctness of the program, and the
motivation for this approach is the concern for a quick conversion. In the overall scheme, once the program is
working with these transformations, then more comprehensive changes could be considered. The objective,
again, was to break the dependency on the IBM as soon as possible.

CONVERTING LARGER SYSTEMS

After the conversion of assembly routines and standard transformations of routines, there likely remains a
great deal of work to be expended in putting all the pieces together to build a functioning system. In the
Pioneer production conversion effort, a combination of two approaches was employed.

In the first approach, a bottom-up approach, the source code was first analyzed for dependencies between
modules. The dependencies were represented by a directed graph (acyclic in this case), and the sinks (i.e.,
those modules which were independent of other modules) were identified. The approach was to begin with
the modules which were sinks and work up the hierarchy to those modules which were sources (i.e., those
upon which no other modules were dependent). Essentially, this approach attempts to convert the software in
the same order that it would have initially been built.

The second approach, a top-down approach, attempts to convert the software in the order in which modules
are called and statements executed, as if tracing the execution of the program. This method proved
particularly useful in setting up conditions for invoking subroutines being converted in the order chosen in the
first approach above.

15

STATE OF THE CONVERSION

At the time of the preparation of this document, the Pioneer production software has been tested against the
IBM on Pioneer-F data in formats A and A/D. Additional and more extensive testing should be performed
against the IBM. More specifically, testing of Pioneer-G data and Pioneer-F data in B formats should be
performed.

The format of the testing to date has been the comparison of outputs from the listing programs PFRTPL,
PRNPHA, and FLXLST run on both the Sun and the IBM. Inputs to these listing programs were the output
files from PIODRP and FLXDBG. Comparison of the resulting text files was made with the Unix diff -h
command.

No catalog system has been specified or implemented for the data at this time, either. This work will possibly
involve major changes to the software, resulting in the need for further testing. The initial Sun conversion,
once tested and proven, can serve as the basis for these future tests.

